An adventure on the JOIDES Resolution: One year later

cf_dec2016_fig1
Fig. 1 – (Top) One of the many magnificent sunrises observed by scientists on board the JR; (Bottom) View of the derrick, tower that holds the drill string, from the Bridge Deck, and (Top-left) all Expedition 360 participants. Images credits: William Crawford, Exp. 360 Senior Imaging Specialist; Jiansong Zhang, Exp. 360 Education/Outreach Officer.

Earlier this year Barbara wrote about ‘Life on board of a scientific drilling vessel’. That interview gave some hints in the unique experience my colleagues and I shared on board the Joides Resolution. Now, you might wonder what Joides Resolution (JR) exactly is. The JR is a drilling vessel dedicated to scientific research on ocean and ocean crust dynamics. Different disciplines are involved, from geology (to elucidate the formation of the oceanic crust), to climate change science (to understand how the Earth handled past climatic events), oceanography (to study global water circulation), or microbiology (to track extreme life in rocks forming the ocean floor).Cores of rocks are drilled under the ocean floor, giving scientists a glimpse into Earth’s dynamics. The JR works for the international research program IODP (International Ocean Discovery Program), a marine research collaboration that aims at recovering data recorded in seafloor sediments and rocks, and monitoring subseafloor environments. Continue reading

Rocks never forget!

zp3_fig_1
Figure1. Elephant rock, Castelsardo, Sardinia, Italy (picture by Vid Pogačnik)

Did you know that some rocks can have an incredible “magnetic memory”? The age of rocks can vary from seconds to billions of years, and besides their sometimes very old age they store information that is useful to reconstruct the history of our Planet.

We commonly use the word “memory” referring to our computer storage capacity or our own ability to remember. Rocks store information, but unlike us they are able to do it over longer periods of time. The oldest memory we have is limited to what humankind experienced but some rocks are much older than humans. Therefore it is really important to be able to extract their memories in order to better understand what we didn’t experience ourselves.  

This “magnetic memory” relates to certain minerals in rocks (e.g. magnetite, hematite) able to record the direction and the intensity of the Earth’s magnetic field when they form.

Continue reading